
2404 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

q 2001 American Meteorological Society

Application of the Newton–Krylov Method to Geophysical Flows

JON REISNER, VINCENT MOUSSEAU, AND DANA KNOLL

Los Alamos National Laboratory, Los Alamos, New Mexico

(Manuscript received 2 May 2000, in final form 16 February 2001)

ABSTRACT

An implicit nonlinear algorithm, the Newton–Krylov method, for the efficient and accurate simulation of the
Navier–Stokes equations, is presented. This method is a combination of a nonlinear outer Newton-based iteration
and a linear inner conjugate residual (Krylov) iteration but does not require the explicit formation of the Jacobian
matrix. This is referred to here as Jacobian-free Newton–Krylov (JFNK). The mechanics of the method are quite
simple and the method has been previously used to solve a variety of complex coupled nonlinear equations.
Like most Krylov-based schemes, the key to the efficiency of the method is preconditioning. Details concerning
how preconditioning is implemented into this algorithm will be illustrated in a simple one-dimensional shallow-
water framework. Another important aspect of this work is examining the accuracy and efficiency of the Newton–
Krylov method against an explicit method of averaging (MOA) approach. This will aid in the determination of
regimes for which implicit techniques are accurate and/or efficient. Finally, results from the Navier–Stokes fluid
solver used in this paper are presented. This solver employs both the JFNK and MOA approaches, and it is
reasonably efficient and accurate over a large parameter space. As an illustration of the robustness of this fluid
solver two different flow regimes will be shown: two-dimensional hydrostatic mountain-wave flow employing
a broad mountain and two-dimensional nonhydrostatic flow employing a steep mountain and high spatial res-
olution.

1. Introduction

Atmospheric motions are described by coupled non-
linear partial differential equations. The equations not
only describe the dynamical processes such as fluid mo-
tion, but also the physical processes such as atmospheric
radiation, chemistry, etc. Because few analytical solu-
tions exist, in order for solutions to be obtained, the
equations are usually discretized and solved numeri-
cally. How the equations are discretized is a matter of
choice and may involve either implicit and/or explicit
temporal differencing; however, both implicit and ex-
plicit approaches typically attempt to take advantage of
the disparity of timescales present in the atmosphere
between those of material motions and those of the fast-
est waves (e.g., sound waves). For example, explicit
approaches usually employ a technique called splitting
(Skamarock and Klemp 1992) in which the fastest waves
of the system are treated in a computationally efficient
manner by splitting them off from the rest of the dy-
namical equations. In contrast, implicit approaches at-
tempt to solve linear Poisson/Helmholtz equations in
which the fastest waves are either eliminated or damped

Corresponding author address: Dr. Jon M. Reisner, Los Alamos
National Laboratory, Atmospheric and Climate Science, EES-8, MS
D401, Los Alamos, NM 87545.
E-mail: reisner@lanl.gov

by the implicit solver (Clark 1977; Smolarkiewicz and
Margolin 1994; Skamarock et al. 1997).

As discussed in Reisner et al. (2000), problems may
arise when using explicit splitting approaches in a com-
pressible framework, primarily that the monotonicity of
the advected variables is difficult to preserve. In that
paper, the use of a little-known technique, the method
of averaging (MOA), was discussed and was found to
allow advected variables to remain monotone, even
when extreme atmospheric events such as occur in wild-
fires are simulated. The MOA is a nested algorithm in
which advective velocities and forces are computed in
a inner loop using first-order numerics, and then used
in a more costly outer loop that employs a higher-order
forward-in-time advective scheme. As mentioned in that
paper, a potential problem does exist with the MOA
approach. Namely, as the disparity of scales increases,
the approach becomes less computationally efficient. To
circumvent this problem we have investigated using a
robust nonlinear implicit solver, the Jacobian-free New-
ton–Krylov (JFNK) method (Knoll et al. 1996; Knoll
et al. 1999a), to implicitly solve the nonlinear Navier–
Stokes equations. Unique aspects of the JFNK approach
are that it enables researchers to easily investigate the
importance of including nonlinearities in the discretized
equations and does not require that an elliptic-like Pois-
son/Helmholtz equation be solved. For example, the
pressure gradient term in the Navier–Stokes equations

SEPTEMBER 2001 2405R E I S N E R E T A L .

involves the product of density and pressure and in al-
most all atmospheric models the discretized represen-
tation of this expression is linearized. We will show
during the course of this paper how this term, or po-
tentially any other nonlinear term, can be systematically
modeled using the JFNK method. Since compressible
models allow for the use of either explicit or implicit
numerical formulations, another important aspect of this
work will be to highlight regimes in which the JFNK
solver becomes both numerically more efficient and ac-
curate than the MOA approach.

The efficiency of the JFNK method is crucially de-
pendent on the ability of the preconditioner to reduce
the number of iterations required by the Krylov solver.
Typically, considerable flexibility exists both in the
choice of a preconditioner (Saad 1995; Skamarock et
al. 1997) and also on the level of approximations made
in the preconditioning matrix. If physical effects such
as turbulence, radiation, or latent heat release are in-
cluded in the JFNK method, the preconditioner can be-
come complicated, and in certain circumstances the ma-
jority of the computational time is used within the pre-
conditioner and not in the Krylov solver. Hence, con-
structing an efficient preconditioner for a Krylov solver
requires knowledge of the problem physics and some
trial and error. However, successful construction of an
efficient preconditioner can result in a significant in-
crease in computational efficiency. In section 2 we pre-
sent the basics of JFNK. In section 3 we will detail how
a simple preconditioner is incorporated into the JFNK
method as well as illustrate the details of the JFNK
approach on the one-dimensional shallow-water equa-
tions, and in this section we will show results from the
shallow-water model. In the fourth section, results from
a fully compressible model employing the JFNK solver
will be shown. In the final section we offer some con-
cluding remarks.

2. Jacobian-free Newton–Krylov method

In this section we will describe the basics of the JFNK
method, and the preconditioning of this method, in a
generic setting. The following section will be more spe-
cific, by presenting the application of JFNK to the shal-
low-water equations. Significant contributions have
been made to the ideas behind JFNK from both the
partial differential equations (PDEs) community and the
optimization community. We will provide reference to
both communities, but will focus on the PDE commu-
nity since it is the work we are most familiar with.

a. Basics

Newton’s method requires the solution of the linear
system,

nk nk nk11 nk nknkJ du 5 2F(u), u 5 u 1 ddu , (1)

where J is the Jacobian matrix, F(u) is the nonlinear

system of equations (the discretized partial differential
equations), u is the state vector, du is the Newton update
vector, d is an adaptively chosen damping scalar, and
nk is the Newton iteration level (the superscript n will
be used later for time level). Note, in this study d 5 1.
Equation (1) is iterated until \F(unk)\ 2 , enk with enk a
specified nonlinear tolerance. In the next section we will
briefly discuss how the accuracy of a particular solution
depends on enk.

For our Krylov solver, we use the GCR(k) method of
Eisenstat et al. (1983), which is a nonsymmetric variant
of the conjugate gradient method. This solver requires
that an initial residual be specified. Suppressing the non-
linear (Newton) iteration index, nk, an initial linear re-
sidual, ro, can be expressed as follows:

o or 5 2F(u) 2 Jdu ,

with duo usually being set to zero.
Along with the initial residual, to approximately in-

vert (1) for du each iteration, l, of our chosen Krylov
algorithm requires the action of the Jacobian in the form
of matrix-vector products, which may be approximated
by a first-order Taylor series expansion (Chan and Jack-
son 1984; Brown and Saad 1990):

l lJr ø [F(u 1 er) 2 F(u)]/e, (2)

rl being a residual vector computed by our chosen Kry-
lov solver and e is a small perturbation. This is not a
finite-difference approximation to the Jacobian, it is a
finite-difference approximation to the Jacobian matrix
times a vector. For a simple derivation of this approx-
imation see Knoll et al. (1999a). To evaluate the small
perturbation, e, we use

Ntot1
e 5 (a|u |),O mN \u\ m51tot 2

where Ntot is the total linear system dimension and a is
a constant whose magnitude is approximately the square
root of machine roundoff (a 5 1028 in this study). Other
options for choosing e are discussed in Brown and Saad
(1990).

Since the use of an iterative technique to solve (1)
does not require the exact solution of the linear system,
the resulting algorithm is categorized as an ‘‘inexact’’
Newton’s method within the PDE community (Dembo
et al. 1982; Eisenstat and Walker 1996), and as a ‘‘trun-
cated’’ Newton method within the optimization com-
munity (Dembo and Steilhaug 1983). We employ the
following inexact convergence criteria on the linear it-
eration:

nk nk nknk\J du 1 F(u)\ , g \F(u)\ ,2 2 (3)

where g is a constant less than one. Keeping g small,
which is required for Newton-like nonlinear conver-
gence, can put a significant strain on the Krylov solver,
especially as the dimension of the linear system grows.
Hence, there is a trade-off between the effort required
to solve the linear system to a tight tolerance and the

2406 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

resulting required number of nonlinear iterations. A rel-
atively large value for g will result in less work for the
Krylov method but more nonlinear iterations, whereas
a small value for g will result in more Krylov iterations
per Newton iteration with fewer Newton iterations. Ex-
amples of this trade-off between total nonlinear itera-
tions and CPU time are given in McHugh and Knoll
(1994) and Pernice and Walker (1998). Only constant
values of g are considered in this study, and these values
will be such that true quadratic convergence of Newton’s
method is not observed. For further discussion on the
subject of choosing g see Eisenstat and Walker (1996)
or Nash and Sofer (1990) and for the effect of different
choices of g on the solution of the Navier–Stokes equa-
tions see McHugh and Knoll (1994) and Pernice and
Walker (1998).

b. Preconditioning the JFNK method

The purpose of preconditioning is to efficiently clus-
ter eigenvalues of the iteration matrix, which will in
turn reduce the required number of Krylov iterations.
Traditionally, for linear problems, one chooses a few
iterations of a simple iterative method (applied to the
system matrix) as a preconditioner. Here, we will con-
sider preconditioning that does not form the system ma-
trix, J, as well as preconditioning that does. The motive
for calling this method Jacobian free and not matrix free
is that a matrix is formed for the preconditioner. Pre-
conditioning methods that do not form all the elements
of the Jacobian have been simply called matrix free
(Chan and Jackson 1984; Nash 1985; Qin et al. 2000)
in the literature. Additionally, we believe the primary
benefits of the ‘‘matrix-free’’ approximation to be when
the vector, u, contains more than one variable and hence
forming the primary elements of the Jacobian could
exceed the memory of some computers.

In principle one can use left or right preconditioning.
We have chosen left preconditioning here. Using left
preconditioning within our chosen Krylov solver re-
quires the following two steps: 1) precondition the initial
residual vector (iteratively, and not to convergence)
po 5 P21ro with the vector po being subsequently used
in the Krylov solver and P21 the inverse to the precon-
ditioning matrix, and 2) precondition subsequent resid-
ual vectors, ql 5 P21rl, with q l being used to compute
Jql.

This procedure closely follows that which was de-
scribed by Skamarock et al. (1997), except for the ap-
proximation to the matrix-vector multiplication required
to compute Jq l. Only the matrix (or matrix elements)
that is (are) required for P21 need be formed and stored.
There are two choices to be made: 1) What linearization
should be used to form the matrix elements required in
P21? 2) What linear iterative method should be used for
ql 5 P21rl?

Examples of various preconditioning strategies ap-

plied to date within the JFNK framework include the
following:

1) using a low-order spatial discretization to precon-
dition a higher-order discretization (Knoll 1998),

2) using a simple Picard linearization to form the pre-
conditioner (Knoll et al. 1999b),

3) ignoring specific physics terms when forming the
preconditioner (Brown and Saad 1990; Knoll et al.
1999b), and

4) using a time splitting method as a preconditioner
(Mousseau et al. 2000).

As an example of a simple preconditioner that requires
the formation of only part of P consider a multipass
Jacobi iteration for Pq 5 r with P 5 L 1 D 1 U, D
being the main diagonal, and L(U) being the lower (up-
per) part of the preconditioner matrix. This can be writ-
ten as

k11 21 kq 5 D [r 2 (L 1 U)q],

where superscript k is the Jacobi iteration level. This
requires the formation of D, and L, and U, that is, P.
A reduced storage approach exploits the relation,
(L 1 U)q k 5 Pq k 2 Dq k , and iterates the equation,

k11 21 k kq 5 D [r 2 (Pq 2 Dq)],

where Pqk is formed in a matrix-free fashion. Thus one
only needs to form D (a vector for a scalar problem).
It is straightforward to implement a symmetric succes-
sive over relaxation (SSOR) in a similar reduced storage
manner (Chan and Jackson 1984), as well and an al-
ternate direction implicit (ADI) approach (Qin et al.
2000).

3. Application of the JFNK method to the shallow-
water problem

a. Shallow-water model

For our demonstration of the JFNK approach we have
chosen a simple model problem that solves the one-
dimensional shallow-water equations in flux form with
no bottom topography.

We have added additional forcing terms that lead to
a closed-form analytical solution. The equations are

]h]uh
1 5 f and (4a)h]t]x

]uh]uuh]h
1 5 2gh 1 uf 1 hf 5 F, (4b)h u]t]x]x

where h is the height of the fluid, u is the velocity of
the fluid, g is the acceleration due to gravity, and

f 5 (a v 2 a h k) sin(kx 1 vt) 1 a a k sin2(kx 1 vt)h h u o h u

and
2f 5 (a gk 2 a v) sin(kx 1 vt) 2 0.5a k sin2(kx 1 vt);u h u u

Eqs. (4) have the analytic solutions

SEPTEMBER 2001 2407R E I S N E R E T A L .

u 5 a cos(kx 1 vt), and h 5 h 2 a cos(kx 1 vt),u o h

where ho is the average height of the initial wave, v is
the frequency of the wave, and k is the wavenumber.
Note, the analytical solutions are used as initial con-
ditions (set t 5 0) and periodic boundary conditions are
employed in this simple model.

Considerable flexibility exists with respect to the so-
lution of (4) in the JFNK approach. In our work we
have chosen to use the JFNK method to determine the
appropriate time-centered cell-face advective velocities
and forces such that (4) can be discretized in conser-
vative form. Additionally, only one equation, (4a), is
currently being solved for by the JFNK method with
the current JFNK formulation specifically designed to
replace the explicit inner loop of the MOA approach
with an implicit solver. For a description of the discre-
tized shallow-water equations utilizing the MOA ap-
proach see appendix. Because their outer loops are of
roughly the same form, this allows for ease of com-
parison between the two different solution techniques
within the same code. Specifically, the discretized equa-
tions used in the outer loop of our shallow-water code
with the JFNK method active are as follows:

n11 n n n n11h 5 h 1 MPDATA(h 1 0.5 f , a)i i i h i61/2i

n111 0.5 f (5a)hi

n11 n n n n11uh 5 uh 1 MPDATA(uh 1 0.5F , a)i i i i i61/2

n111 0.5F , (5b)i

where a is the advective cell-face velocity computed by
the JFNK method and i is the spatial location. Here
MPDATA refers to the second-order-accurate advection
scheme of Smolarkiewicz (1984). Following Smolar-
kiewicz and Margolin (1993), additional terms of the
form; 0.5 and 0.5 , are added to and u , re-n n n nf F h hh i i ii

spectively, before the advective MPDATA algorithm is
used to ensure second-order accuracy of the entire al-
gorithm.

Assuming an inner loop of the form

n11 n11 n n n11F (ĥ) 5 ĥ 2 h 1 DONOR(h , a)sw i i i i61/2

n111 f (6)hi

with ĥn11 the state vector containing the shallow-water
height field that satisfies the right-hand side of (6) where
the hat symbol specifies a distinct inner loop variable,
and DONOR referring to the standard (first-order ac-
curate) donor-cell advection scheme, the appropriate
forces and advective velocities for use in the second-
order accurate outer loop (5) are obtained. Though linear
stability theory suggests that breaking (4a) up into an
advective component u(]h/]x) and a divergent compo-
nent h(]u/]x) and implicitly solving for only the diver-
gent component is stable, numerical testing of our non-
linear models revealed that for a model written in con-
servative form instabilities develop if a discretized form

other than (6) is used. This was found to be especially
true in simulations employing our Navier–Stokes model
over regions of steep topography. Note, that the first-
order pass of MPDATA is simply donor-cell advection
with subsequent iterations of MPDATA presumably not
effecting the stability (Smolarkiewicz 1984). Hence, (6)
is not in a classic elliptic-like equation form and though
the vector Fsw(ĥn11) represents only one equation, ad-
ditional equations such as (5b) could easily be included
in the vector. The ability to implicitly solve nontradi-
tional elliptic equations is one of the virtues of the JFNK
method.

In (6) is formulated from the advective form ofn11ai61/2

(5b). Specifically the left cell-face advective velocity is
calculated as follows:

Dt
n11 n11 n11a 5 0.5(û 1 û) , (7)i21/2 i i21 Dx

where,

Dt
n11 n n11 n11û 5 û 2 0.5g (ĥ 2 ĥ), (8)i i i11 i21Dx

with 5 1 UPWIND(, (Dt/Dx)) 1 Dt withn n n n n11û u u u fi i i i ui

UPWIND referring to the first-order upwind advective
scheme or simply a nonconservative form of donor-cell
advection. In the evaluation of (6) ĥn11 is computed
using the methods put forth in section 2a so as to min-
imize the L2 norm of (6) to a specified enk. Note, when
convergence is reached the force, , is computed forn11F i

use in (5b). Though (6) is linear, the above example
will serve as a prototype for the nonlinear Navier–
Stokes equations. In summary, the temporal advance-
ment of (5) proceeds in the following steps:

1) , and are computed within the inner loopn11 n11a Fi61/2 i

using the JFNK approach;
2) 0.5 and 0.5 are added to uhi and hi, respectively;n nF fi hi

3) uhi and hi are next updated using the second-order
advective scheme MPDATA, and

4) 0.5 and 0.5 are then added to uhi and hi,n11 n11F fi hi

respectively, to complete the time-stepping proce-
dure.

b. Preconditioning

As mentioned in the previous sections, the precon-
ditioning of a Krylov solver can lead to a significant
reduction in the number of Krylov iterations and thus
a reduction in overall computation time. In this section
we will briefly demonstrate how a preconditioner is
formed in the JFNK shallow-water framework.

For the one-dimensional shallow-water model and for
preconditioners for which all elements of the Jacobian
are calculated, the components of P are obtained nu-
merically. To accomplish this, (6) was coded such that
Fsw(hn) could be computed on a point by point basis,
Fsw(). The finite-difference stencil of (6) requires thatnhi

2408 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

FIG. 1. The dependence of the measure of the truncation error on
the number of halvings of the grid and time increments with the lines
labeled JFNKS1 (S2) and MOAS1 (S2) from simulations with v 5
0.0 (1.0), where v is the frequency of the applied forcing.

five components for each entry of the preconditioning
matrix be computed. The five entries on each row are

n n n]F (h) F (h 1 e e) 2 F (h)sw sw c i22 sw1P 5 5 (9a)i]h ei22 c

n n n]F (h) F (h 1 e e) 2 F (h)sw sw c i21 sw2P 5 5 (9b)i]h ei21 c

n n n]F (h) F (h 1 e e) 2 F (h)sw sw c i sw3P 5 5 (9c)i]h ei c

n n n]F (h) F (h 1 e e) 2 F (h)sw sw c i11 sw4P 5 5 (9d)i]h ei11 c

n n n]F (h) F (h 1 e e) 2 F (h)sw sw c i12 sw5P 5 5 , (9e)i]h ei12 c

with ec 5 1.0 3 1028 and e i being the vector with all
zero entries except at the location i where it has a value
of one. Note that the coefficients for the preconditioner
are currently computed only once at the start of the
Newton iteration loop. Fortunately, for this particular
problem, the Jacobian matrix has a simple form and can
almost be exactly inverted using a five-point pentadi-
agonal solver algorithm with only the cyclic boundary
conditions not being properly incorporated into the sim-
ple preconditioner. This preconditioner can be expressed
at each point as follows:

1 2 3 4 5P q 1 P q 1 P q 1 P q 1 P q 5 r . (10)i i22 i i21 i i i i11 i i12 i

Boundary conditions are imposed by moving the ap-
propriate terms to the right-hand side of (10). For ex-
ample, at i 5 1, qi22 and qi21 are both moved to1 2P Pi i

the right-hand side. With this preconditioner active only
one to two Krylov iterations per time step typically are
required for convergence to be reached. Without this
preconditioner active, 20 or more Krylov iterations are
sometimes required for convergence.

Also, from our earlier discussion in section 2b one
can see that equation (10) can be approximately inverted
in a matrix-free fashion by only storing the diagonal
() portion of the matrix. Results from this type of3Pi

preconditioner as well as the previously mentioned pre-
conditioner will be presented in the next section.

c. Results

The JFNK approach is most appropriate for regimes
where the flow velocity is much less than the speed of
the fastest wave. But an important question that will be
at least partially addressed in this section is, how much
less? Before quantifying this regime, we need to first
demonstrate that for regimes of interest the JFNK al-
gorithm is of comparable accuracy to the MOA algo-
rithm. For the first series of tests we have chosen the
following parameters for our simple model. g 5 1.0
m s22, ho 5 1.0 m, ah 5 0.01 m, au 5 0.01 m s21,
k 5 2 m21, and v 5 0.0 s21 (a steady-state forcing

regime), which gives Vg 5 5Ïg(h 1 a) Ï1.01o h

m s21 where Vg is the speed of the fastest gravity wave
in this model. For the MOA simulation, MOAS1,
N 5 50 subcycles were used in the inner loop such that
N(Dt/Dx) 5 50.0 s m21; whereas, for the JFNK simu-
lation, JFNKS1, Dt/Dx 5 50.0 s m21 was specified.
Note, for the MOA algorithm VgDt/Dx of the inner loop
must be no larger than about one (see Fig. 1 of Reisner
et al. 2000) for stability of the inner loop. Following
Smolarkiewicz (1984), we ran the simulations at suc-
cessively finer resolution while maintaining a fixed
Courant number au(Dt/Dx) with each successive Dt and
Dx being reduced by a factor of 2. For each simulation,
we calculate the truncation error,

NX

N 2T(c(T, x) 2 c)O i i
i51Îtruncperror(N , N) 5 , (11)T X N NT X

where NT 5 TN/Dt with N equal to the number of sub-
cycles within the inner loop (N 5 1 for JFNK simu-
lations), NX 5 L/Dx with T 5 2p s and L 5 2p m, and
c(T, xi)/ are the analytical and numerical solutions,NTci

respectively, at the point (T, xi). Initially NX 5 NT 5
18, with this number repeatedly being doubled. Also,
in all JFNK simulations a value of 1 3 1022 is used
for g from (3).

SEPTEMBER 2001 2409R E I S N E R E T A L .

FIG. 2. Ratio of CPU time multiplied by the L2 norm error for
MOA simulations over JFNK simulations as a function of au/Vg with
au/Vg being the relative speed of the material motion with respect to
the speed of the fastest wave. Ratios of CPU time multiplied by the
L2 norm error less than one imply a regime where the explicit MOA
algorithm is both more efficient and accurate than the implicit JFNK
alogorithm. JFNK simulations with the preconditioner active employ
the nearly direct ADI preconditioner.

Figure 1 shows that for the current choice of param-
eters, the JFNK approach produces a solution that is
slightly more accurate than the MOA technique; how-
ever, the slopes of the lines still indicate second-order
convergence in time [cf. with convergence curves
shown in Smolarkiewicz (1984)]. In JFNKS1 enk 5
1.0 3 1028, a reduction to enk 5 1.0 3 1023 produced
an error curve (not shown in Fig. 1) that lies between
the two curves of JFNKS1 and MOAS1.

Numerical tests suggest that for this particular regime
an enk . 1 3 1023 prohibits second-order convergence
in time and space. Surprisingly, changing v from 0.0
to 1.0 s21 with all other parameters fixed, results in a
reversal in accuracy between the two numerical ap-
proaches. Not only is the MOA solution, MOAS2, more
accurate than the JFNK solution, JFNKS2, the slope of
the line from MOAS2 is somewhat less than the slope
of the line from JFNKS2. The ability of the MOA ap-
proach to resolve the movement of the fastest waves—
though not necessarily the amplitude—in the inner loop
is the principal reason for why the MOA algorithm is
more accurate in this flow regime. Also, in agreement
with the above reasoning, additional simulations reveal
that when the flow velocity nears the speed of the fastest
wave, the MOA technique becomes more accurate than
the JFNK approach. However our tests do suggest that
the JFNK approach maintains second-order accuracy in
regimes for which it was designed, au/Vg K 1, and low-
frequency forcing.

Though we have demonstrated the use of the JFNK
method in a conservative shallow-water equation set em-
ploying the forward-in-time advection scheme MPDATA,
we could have just as easily used a more traditional at-
mospheric algorithm, for example, the second-order ac-
curate leapfrog advection scheme employed in a noncon-
servative shallow-water framework. The function to be
minimized in this framework is simply

Dt
sw n11 n11 n21 n nF (h) 5 h 2 h 1 LEAP h , ui i i i1 2Dx

Dt
n11 n11 n111 h (u 2 u) 2 2.0 f Dti i11 i21 hDx

with LEAP referring to the standard leapfrog advec-
tion scheme and the divergent velocity field being
represented by 5 2 LEAP[, (D t/Dx)] 2n11 n21 n nu u u ui i i i

g(D t/Dx)(2) 1 2.0 f uD t. Note that the di-n11 n11h hi11 i21

vergence term can easily be linearized by replacing
hn11 with hn and enforcing only one Newton iteration
per time step. The effect of this linearization was
found to lead to a less accurate solution (not shown)
then from the nonlinear leapfrog model for v . 0.0.

Next, for a fixed forcing we attempt to quantify the
point at which the ratio (MOA–JFNK) of accuracy time
efficiency for the two numerical approaches tips in favor
of the JFNK method. For these simulations au/Vg was
varied from 0.0001 to 0.5 with all other parameters the

same as used in JFNKS1, except that all simulations
were run for a fixed 2000 time steps and either the
number of subcycles for the MOA approach or Dt/Dx
for the JFNK approach was chosen such that (Dt/Dx)au

5 0.5. The ratio (MOA–JFNK) of accuracy times ef-
ficiency for the the two numerical approaches is illus-
trated by the solid line in Fig. 2 and clearly shows that
the cross-over point for which implicit techniques be-
come viable is for flow regimes around au/Vg 5 0.02.
Obviously preconditioning, which influences the effi-
ciency of the JFNK approach, should shift this crossover
point towards the right. Indeed with the pentadiagonal
solver based preconditioner active the dashed line in
Fig. 2 indicates a rightward movement of the crossover
point to around au/Vg 5 0.04. Note, that this crossover
point is only approximate, factors such as the weighting
functions used in the MOA procedure or the type of
preconditioner used in the JFNK method can have a
significant impact on the location of the crossover point.

Finally, we will consider the performance of a few
simple matrix-free preconditioners in the shallow-water
environment. Matrix-free preconditioners in this frame-
work can be rather easily formulated based upon the
methodology put forth at the end of section 2. The model

2410 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

setup is the same as used to generate the curves in Fig.
1 for v 5 0. Results are presented for two matrix-free
(MF) preconditioners: MF Jacobi and MF symmetric
Gauss–Seidel (SGS). In Table 1 the results for these two
matrix-free preconditioners are compared to the matrix
versions of Jacobi and SGS as well as no precondition-
ing and an ‘‘almost’’ direct solver for comparison. Note
that the direct solver is our pentadiagonal solver, which
does not capture all of the coupling due to the periodic
boundary conditions. From Table 1 it is clear that the
MF preconditioners provide almost the same level of
Krylov iteration reduction but at a slightly higher CPU
cost. Therefore, the MF preconditioners allow the option
of trading CPU time for storage cost. This finding is
consistent with that of Qin et al. (2000).

Thus, in this section we have attempted to provide
some guidance as to what type of preconditioner to use
as well as when implicit solvers become viable with
respect to explicit flow solvers in terms of both accuracy
and efficiency. Our results suggest that in flow regimes
in which the normalized velocity component is about
50 times less than the speed of the fastest wave, implicit
solvers appear to be the ideal choice. It should be noted
that most mesoscale weather prediction codes, such as
the fifth-generation Mesoscale Model (Grell et al. 1994)
or the Regional Atmospheric Modeling System (Pielke
et al. 1992), take advantage of the natural disparity of
scales between horizontal and vertical motions and em-
ploy explicit solvers in the horizontal and implicit solv-
ers in the vertical. Unfortunately, this approach does not
lead to an entirely universal solver, one that is accurate
for all scales, and obviously can, under certain circum-
stances, lead to large splitting and/or conservation er-
rors. Though not as potentially efficient as the approach
used in mesoscale weather prediction models, we have
chosen to implement the JFNK approach into a model,
HIGRAD (short for high gradient flow solver), which
allows the fully compressible Navier–Stokes equations
to be solved implicitly in a three-dimensional frame-
work. Of course, with the inclusion of buoyancy the
current nonlinear shallow-water model could rather eas-
ily mimic the vertical implicit solver used in most me-
soscale models.

4. HIGRAD

a. Navier–Stokes model

HIGRAD was initially developed at the Los Alamos
National Laboratory (Reisner et al. 2000) to study the
movement of wildfires. In this flow regime, the MOA
approach is a good choice; however, to extend HIGRAD
to flow situation in which the MOA technique is no
longer computational efficient the JFNK method has
been implemented into HIGRAD. Details of the imple-
mentation of the JFNK approach into HIGRAD will be
discussed in this section.

HIGRAD solves the compressible form of the Na-

vier–Stokes equations. The equations written in flux
form are

]Gur
1 = · (vGru) 5 GR (12a)ur]t

]Gyr
1 = · (vGry) 5 GR (12b)yr]t

]Gwr
1 = · (vGrw) 5 GR (12c)wr]t

]Gur
1 = · (vGru) 5 0 (12d)

]t

]Gr
1 = · (vGr) 5 0 (12e)

]t
C /Cp y(R ru)dp 5 , (12f)

R Cd ypo

where u, y, and w are the velocity components in the
coordinate system (x, y, z) 5 (xc, yc, zc) with the sub-
script c referring to Cartesian coordinates, u is the po-
tential temperature, u 5 with T the temper-R /Cd pT(p /p)o

ature of the gas and po 5 105 N m22 the base state
pressure, and

IJ 21/2G 5 det(]x /]x) 5 [det(G)]c

is the Jacobian of transformation with
3 I J]x]x

I,JG 5 .O K K]x]xK51 c c

The equation of state, (12f), relates the total pressure,
p, to the density, r, and the potential temperature, u, of
the gas.

The constants, Cp/Cy 5 1004/717 J K21 kg21, and
Rd 5 287 J K21 kg21, in (12f) are the specific heat of
air at constant pressure/volume and the gas constant of
dry air, respectively. The contravariant vertical com-
ponent of the advective velocity vector v 5 uı̂ 1 y ĵ 1
vk̂ appears as the result of employing a terrain-follow-
ing coordinate system, (x, y, z) 5 [xc, yc, H(zc 2 h)/
(H 2 h)], where H is the model depth and h 5 h(xc, yc)
the model bottom. It is related to the Cartesian velocity
components by the relationship, v 5 G13u 1 G23y 1
G21w.

The forces Rur, Ryr, and Rwr in (12) are

]p9]p9
13R 5 2 2 G 1 fr(y 2 y)ur e]x]z

2 f̂r(w 2 w) (13a)e

]p9]p9
23R 5 2 2 G 2 fr(u 2 u) (13b)yr e]y]z

]p9
21R 5 2G 2 r9g 1 f̂r(u 2 u), (13c)wr e]z

where ue, y e, and we are the balanced environmental

SEPTEMBER 2001 2411R E I S N E R E T A L .

velocity components; f 5 2V sinw and f̂ 5 2V cosw
are the z and y components of the earth’s rotation axis
at the latitude w; g is the acceleration due to gravity;
r9 5 r 2 re is the density perturbation where re 5 re(zc)
is the environmental density; and p9 5 p 2 pe is the
pressure perturbation with pe 5 pe(zc) the environmental
pressure.

The basic algorithm for integrating (12) on a discrete
mesh is second-order accurate in space and time. We
use a grid in which all variables are defined at the same
location. Employing the JFNK approach, the discretized
equations of the outer loop of HIGRAD are

n11 n n n11ur 5 MPDATA(ur 1 0.5R , a , G)i i ur i61/2 ii

n111 0.5R (14a)uri

n11 n n n11yr 5 MPDATA(yr 1 0.5R , a , G)i i yr i61/2 ii

n111 0.5R (14b)yri

n11 n n n11wr 5 MPDATA(wr 1 0.5R , a , G)i i wr i61/2 ii

n111 0.5R (14c)wri

n11 n n11ur 5 MPDATA(ur , a , G) (14d)i i i61/2 i

n11 n n11r 5 MPDATA(r , a , G), (14e)i i i61/2 i

where i is shorthand for the spatial location in three
dimensions. In the Navier–Stokes model the second-
order advection scheme MPDATA employs the syn-
chronous transport scheme of Schär and Smolarkiewicz
(1996) to ensure that scalar variables preserve mono-
tonicity.

As was the case in the shallow-water equation set, to
compute a and the forces from the JFNK method the
continuity equation is solved to a specified nonlinear
residual. The discretized form chosen for this equation
is the following:

n11 n11 n n n11F (r̂) 5 r̂ 2 r 1 DONOR(r , a),r i i i i61/2 (15)

with n11 being a state vector that satisfies the right-r̂
hand side of (15). Forming the velocities required to
compute the cell-face velocities, , requires an11ai61/2

straightforward algebraic inversion of the advective
form of (12) with respect to r, u, y, and w—and the
formulation of the boundary value problem for p9. Fol-
lowing Smolarkiewicz and Margolin (1997) the inver-
sion of (12) produces

3]t]p9
I I IJV 5 « n 2 C , (16)O J1 2r]xJ51

where VI [(u, y, v) and the coefficients e, n (note our
buoyancy is of different form), and CIJ are provided in
appendix A of Smolarkiewicz and Margolin (1997).
Next, the individual components of VI are discretized,
multiplied by Gi, averaged in space, and then multiplied
by Dt/DxI to obtain the appropriate cell-face advective
velocity. The pressure perturbation needed to compute

the pressure gradient forces is obtained using a potential
temperature field that is calculated prior to the start of
the Newton iteration loop from the advective form of
(12d). As in the simple shallow-water model, advection
of both potential temperature and of all the velocity
fields is computed with a first-order upwind scheme.
Hence, like in the shallow-water model, the JFNK meth-
od is used to compute advective velocities and forces
in a first-order manner for use in the second-order outer
loop. In this study, we have chosen to include only one
equation in the nonlinear functional; however, we have
experimented with including additional equations such
as (12d) or all of (12) into the algorithm. Second-order
advective schemes could as well be included in the func-
tional eliminating the need for the outer loop and al-
lowing for the implicit calculation of advection.

As was noted earlier, preconditioning can lead to a
significant reduction in the number of Krylov iterations
taken per Newton iteration. Unfortunately, unlike the
shallow-water framework, a preconditioner that directly
inverts the Jacobian matrix cannot realistically be de-
veloped for the current sparse matrix. Instead we have
experimented with approximate and simple precondi-
tioners such as Jacobi, SSOR, ILUT (an incomplete LU
with threshold; Saad 1995), and the five-point penta-
diagonal solver used in the shallow-water model, but
extended to multidimensions, producing an ADI solver.
Currently, all terms within the preconditioning matrix
are computed using a scalar form of (15). In two (three)
dimensions 13 (21) terms are required to form the pre-
conditioner. If computer memory is a concern, Jacobian
terms involving terrain transformations can be dropped
[four (eight) terms in two (three) dimensions] from the
preconditioner and/or matrix-free approximations can
be used; however, as will be shown for steep mountains
the number of Krylov iterations does increase signifi-
cantly if any terms are indeed dropped. This finding is
in disagreement against what was found by Skamarock
et al. (1997) regarding the inclusion of terrain terms in
their preconditioner, but in their ‘‘nonhydrostatic ex-
ample’’ the slope of the mountain was still relatively
small. Additionally, for most atmospheric flow regimes
the coefficients of the preconditioner do not change sig-
nificantly and hence need not be computed every time
step. In fact, for the mountain flow problems to be
shown next, little if any, decrease in the total number
of Krylov iterations was found when the coefficients
were computed only once, at the beginning of the sim-
ulations. It is important to emphasize that the approx-
imations made in the preconditioner do not effect the
accuracy of the JFNK method since these approxima-
tions only effect the convergence rate of the linear prob-
lem, not the residual evaluations.

b. Results

As an illustration of the wide range of problems for
which our Navier–Stokes solver is relatively efficient

2412 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

FIG. 3. Average number of Krylov iterations as a function of enk

for the hydrostatic-scale mountain wave simulations employing the
following preconditioners: (a) ADI preconditioner with one iteration
and g 5 0.1 denoted by solid line with square data points, (b) ADI
preconditioner with one iteration and g 5 0.5 denoted by dashed line
and diamond data points, and (c) SSOR preconditioner with eight
iterations denoted by dashed line and round data points.

we will demonstrate its use on two simple problems, a
hydrostatic mountain wave problem and a nonhydro-
static mountain wave problem with a very steep moun-
tain. For both problems numerous simulations were run
to determine, for example, how sensitive convergence
rates were to the type of a preconditioner used or to the
number of iterations used in a preconditioner. The setup
used for our hydrostatic mountain wave problem is the
same as that employed by Skamarock et al. (1997). This
test problem setup assumes uniform flow Uo 5 20
m s21, constant Brunt–Väisälä frequency Ny 5 0.02 s21,
and a bell-shaped mountain centered in the middle of
the domain,

3/2h(x) 5 H[1 1 (x/L)] , (17)

with a horizontal scale L 5 50 3 103 m and height H
5 1000 m. The computational domain is covered by
100 grid points in the horizontal and 45 grid points in
the vertical. The horizontal resolution is 103 m and the
approximate vertical resolution is 420 m. Simulations
were run with a time step of 50 s for 800 time steps.
Lateral and top gravity wave absorbers were active dur-
ing a simulation. For this test problem multidimensional
forms of the ADI preconditioner or an SSOR precon-
ditioner were used, but in agreement with the findings
of Skamarock et al. (1997) we found little difference in
the total number of Krylov iterations if ‘‘only’’ a vertical
form of either preconditioner with terrain terms ex-
cluded was used. Figure 3 reveals the average number
of Krylov iterations per time step as a function of the
specified nonlinear residual utilizing either the ADI pre-
conditioner employing one iteration or the SSOR pre-
conditioner employing eight iterations. For the ADI pre-
conditioner two sets of curves are shown with the results
being generated by simulations employing different g,
the parameter used in (3). As evident in Fig. 3, for this
flow regime the ADI preconditioner is more robust than
the SSOR preconditioner, especially for smaller enk and
hence appears to be the better of the two precondition-
ers. Significant differences in the total number of Krylov
iterations were also found when the same preconditioner
is used but with a different g. For the larger g the
number of Krylov iterations was reduced by about one-
half, but the number of Newton iterations (not shown)
per time step increased by about a factor of 2. However,
only small differences in computational timings were
found between the two sets of simulations employing
the different g’s. In comparison with the total number
of Krylov iterations from the linear solver used in Ska-
marock et al., the total number of Krylov iterations from
the JFNK solver with g 5 0.5 (0.1) were fewer (greater)
than produced by their solver.

The results from the previous section on the shallow-
water model suggest that for this flow regime the JFNK
solver should be more efficient than the MOA solver.
Indeed, for enk 5 1026 and g 5 0.1 the JFNK solver
was about three times faster than the MOA solver. In
addition to significant differences in timing, Fig. 4 re-

veals that differences in flow features exist at a given
time with respect to the structure of the nonlinear moun-
tain wave. These differences are to be expected in the
lee (Doyle et al. 2000) and appear to be the result of
the random breaking of mountain waves in the lee. Ad-
ditionally, we have conducted simulations comparing
the nonlinear model against a more traditional linear
model. The linear model was achieved by allowing only
one Newton iteration per time step, by setting the time
level of the density in the pressure gradient term to be
at n, and by breaking up the discretized form for pressure
as p 5 (Rd)(Rdr . Computingn11 n11 n [(C /C)21.] R /Cp y d yr u u) /pi i i o

L2 norm error measures of the u velocity field at 40 000
s from both the linear and nonlinear solvers and using
as an ‘‘exact’’ solution results from a simulation em-
ploying a very small time step, 0.025 s, revealed the
nonlinear solver to be about 10% (1%) more accurate
than the linear solver for a time step of 50 (6.25) s.
Based upon this result we hypothesize that differences
between a nonlinear solver versus linear solver would
be even larger if additional physics, such as conden-
sation, were included in the equation set.

Though the results from the previous test problem
suggest that HIGRAD could be used efficiently in that
flow regime, HIGRAD was primarily designed to ex-

SEPTEMBER 2001 2413R E I S N E R E T A L .

FIG. 4. Hydrostatic-scale mountain wave simulation at 40 000 s
with panels (a) and (b) from the JFNK and MOA methods, respec-
tively. Potential temperature, u, is contoured in light dashed lines
with an interval of 12 K. Contours of vertical velocity are in black
with an interval of 0.4 m s21 with solid (dashed) lines indicating
areas of rising (sinking) motions. The plotted region is 1000 km 3
10 km with the specified Froude number being 1.0.

TABLE 1. Statistics from various preconditioners.

Preconditioner

Newton
iterations

per time step

Krylov
iterations per

time step
Total

CPU (s)

No preconditioning
One-pass Jacobi
One-pass MF Jacobi
Three-pass Jacobi
Three-pass MF Jacobi
One-pass SGS
One-pass MF SGS
Three-pass SGS
Three-pass MF SGS
Direct solve

3.99
3.98
3.98
3.98
3.98
2.99
2.99
2.49
2.49
1.00

8.838
8.510
8.510
5.006
5.006
4.327
4.329
3.203
3.202
1.994

24.5
28.2
35.8
19.9
33.5
12.5
17.8
11.2
20.2

4.4

FIG. 5. Average number of Krylov iterations as a function of enk

for the nonhydrostatic-scale mountain wave simulations employing
the following preconditioners: (a) ADI preconditioner with two it-
erations denoted by solid line with square data points, (b) ADI pre-
conditioner with six iterations denoted by dashed line and diamond
data points, (c) SSOR preconditioner with eight iterations denoted
by dashed line and round data points, and (d) SSOR preconditioner
with eight iterations and terrain terms ‘‘turned off’’ denoted by dashed
line and triangle data points.

amine flow features at spatial resolutions of tens of me-
ters or less. As such, we are primarily concerned wheth-
er our preconditioners will be robust enough to make
the JFNK method efficient in this type of flow regime.
To address this issue we have set up a test problem that
utilizes 20-m spatial resolution and a steep bell-shaped
mountain with a height of 300 m and a horizontal scale
of 100 m. This test problem setup assumes uniform flow
Uo 5 2 m s21, constant Brunt–Väisälä frequency Ny 5
0.02 s21, and the same number of nodal points as used
in the previous test problem. Simulations were run with
a time step of 1 s for 900 time steps. Once again either
a multidimensional ADI preconditioner or an SSOR pre-
conditioner was used in the simulations with g being
set to 0.1. Of note, for this flow regime, both precon-
ditioners tend to become less efficient, especially the
ADI preconditioner, as the number of processors in-

creases. Hence, when the code is run in parallel more
sophisticated preconditioners, such as a two-level mul-
tigrid method may be required. This research topic will
be deferred for later papers. Figure 5 shows that for this
flow regime the SSOR preconditioner employing eight
iterations is, unlike the previous problem, more robust
in reducing the number of Krylov iterations than the
ADI preconditioner with two iterations. Increasing the

2414 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

number of ADI iterations from two to six does reduce
the number of Krylov iterations below that of the SSOR
preconditioner; however, the computational cost of sim-
ulations employing the ADI preconditioner with six it-
erations is greater than simulations employing the SSOR
preconditioner with eight iterations. Similar findings
with respect to the utility of using successive over re-
laxation (SOR) as a preconditioner in both a serial and
parallel environment were found by Delong and Ortega
(1995 and 1998). Note that, we have run simulations
employing the SSOR preconditioner without the terrain
terms active in the preconditioner and found the number
of Krylov increases by a factor of 2 (top line in Fig.
5). This finding suggests that for steep terrain the extra
terms related to terrain transformations should be in-
cluded. Also, even with the terrain terms active in the
preconditioner a simulation with enk 5 1026 and the
SSOR preconditioner active is still slightly more ex-
pensive than a simulation employing the MOA ap-
proach. This is not unexpected since the current regime
(U/V ø 0.015) is near the cutoff point shown in Fig. 2.

5. Concluding remarks

The mechanics of the JFNK method have been illus-
trated in this paper. The method has been applied to the
conservative Navier–Stokes equations and shown to be
an efficient solver, comparable in efficiency to linearized
solvers. But, unlike linearized solvers, the JFNK method
enables nonlinear terms to be modeled without any com-
promise. In certain flow situations we believe that com-
promising accuracy by the linearization of certain terms
could lead to a failure of a numerical model to correctly
forecast intensification of a particular weather event. In
this work we have chosen to concentrate on the details
of the method and not the application. As such, rather
simple problems were examined. Future papers will use
this solver on more difficult flows such as occur in the
vicinity of a wildfire or a hurricane. In this regime,
strong nonlinear coupling occurs between terms rep-
resenting combustion, latent heat release, diffusion, and
advection. To capture all of these physical processes
implicitly will require that more than one equation be
solved for within the JFNK framework. Here precon-
ditioning becomes even more of an issue and physics-
based preconditioning will be employed that addresses
the coupled physics in individual pieces in a divide and
conquer strategy (Mousseau et al. 2000). Another ap-
proach would be to use the current solver as a precon-
ditioner for a solver in which all terms in the Navier–
Stokes equation set are handled implicitly.

The development of a fully implicit solver will not
only benefit the simulation of hurricanes or wildfires,
but also the simulation of other difficult problems in
atmospheric science. For example, this solver could be
used in the assimilation of atmospheric weather data, as
well as being used for the prediction of a future at-
mospheric event. The ability to use the same solver for

data assimilation and for prediction is an appealing as-
pect of the JFNK approach. Another potential use for
the solver is in the simulation of global-scale flows. The
small grid increments found near the poles considerably
reduce the time step that can be used by an explicit
advection scheme. By using the JFNK method to solve
an Eulerian advection scheme implicitly, a potential sav-
ings in computational time might be the result; however,
we believe that the current use of the JFNK solver to
solve implicitly for advective velocities and forces in a
first-order manner is a good compromise between ef-
ficiency and accuracy for most atmospheric flow situ-
ations.

A comparison between the explicit MOA solver and
the implicit JFNK solver has revealed regimes appro-
priate for each solver. The JFNK solver tends to do best
in regimes characterized by weak forcing and where
material motions are much smaller than the speed of the
fastest wave. In a predictive mode, the model should
have the ability to switch between either solver de-
pending on how the flow conditions evolve. How the
frequency of switching influences stability of the model
will need to be investigated in the future. Another ex-
ample in which the solvers could be used in combination
is to use the MOA algorithm to provide an initial guess
for the JFNK solver. To help speed up the MOA al-
gorithm so that an initial guess could be obtained in a
timely manner, the speed of the fastest wave within the
MOA method could be artificially reduced allowing for
a larger time step to be used. We have conducted pre-
liminary experiments with this procedure and they in-
dicate some promise. Finally, use of a fully three-di-
mensional implicit solver in an operational weather fore-
casting environment is not without risks; occasionally,
a Krylov solver may get stuck or require a large number
of iterations to converge. For these situations, logic em-
bedded within a code could allow a switch from the
JFNK algorithm to the MOA algorithm. Likewise,
whether or not a Krylov solver gets stuck is crucially
dependent on the robustness of the preconditioner used
in the Krylov solver. We have shown in this paper that
under certain flow regimes either an ADI or SSOR pre-
conditioner works best in terms of reducing the number
of Krylov iterations. We believe that some combination
of both would be preferable and we are currently testing
a preconditioner that incorporates both approaches in a
multigrid framework.

Acknowledgments. Los Alamos National Laboratory
is operated by the University of California for the U.S.
Department of Energy. The authors acknowledge help-
ful discussions with Piotr Smolarkiewicz, Len Margolin,
Rodman Linn, and Bill Rider. We would also like to
thank two anonymous reviewers who put considerable
time in reviewing this manuscript, which ultimately led
to substantial improvements in the revised text.

SEPTEMBER 2001 2415R E I S N E R E T A L .

APPENDIX

MOA Algorithm: Further Details

Following Reisner et al. (2000) to solve (4) to second-
order accuracy in time and space within the MOA frame-
work, we discretized the outer loop of the MOA algo-
rithm as follows:

n11 n nh 5 h 1 MPDATA(h , u NDt/Dx)i i i i61/2

1 DONOR(f , u NDt/2Dx) (A1a)h i61/2i

n11 n nuh 5 uh 1 MPDATA(uh , u NDt/Dx)i i i i61/2

1 DONOR(F , u NDt/2Dx), (A1b)i i61/2

where i61/2 5 0.5(i 1 i61). The averaged quantitiesu u u
, h, and are computed in the inner loop by averagingu f F

in time using the expression
N

nw x̂O n
n50x 5 , (A2)i N

with N the number subcycles of the inner loop, wn the
weighting coefficients that satisfy w0 1 · 1 wN 5 N,
where wo 5 0.3, w1 5 · 5 wN21 5 1, wN 5 0.7, and x̂
representing an inner loop variable that is to be averaged
in time. Note, the advection of the averaged forcing
terms by the donor-cell advection scheme is required to
ensure second-order accuracy of the overall algorithm;
see Smolarkiewicz and Margolin (1993).

The inner loop is discretized as follows:
n11 n n n11/2 n11ĥ 5 ĥ 1 DONOR(ĥ , u) 1 f̂ Dt (A3a)i i i A hi61/2 i

n11 n n n11/2 n11ˆu ĥ 5 uĥ 1 DONOR(uĥ , u) 1 F Dt, (A3b)i i i A ii61/2

where u 5 0.5(1)Dt/Dx; ûn11/2 is com-n11/2 n11/2û ûn11/2A i i61i61/2

puted by a simple extrapolation in time.
To advance this system in time, one first solves (A3)

for N time increments and computes the sums using (A2)
to form the averaged quantities needed to solve (A1).

REFERENCES

Brown, P. N., and Y. Saad, 1990: Hybrid Krylov methods for nonlinear
systems of equations. SIAM J. Sci. Stat. Comput., 11, 450–481.

Chan, T. F., and K. R. Jackson, 1984: Nonlinearly preconditioned
Krylov subspace methods for discrete Newton algorithms. SIAM
J. Sci. Stat. Comput., 5, 533–542.

Clark, T. L., 1977: A small-scale dynamic model using a terrain
following coordinate transformation. J. Comput. Phys., 24, 186–
215.

Delong, M. A., and J. M. Ortega, 1995: SOR as a preconditioner.
Appl. Numer. Math., 18, 431–440.

——, and ——, 1998: SOR as a preconditioner II. Appl. Numer.
Math., 26, 465–481.

Dembo, R. S., and T. Steilhaug, 1983: Truncated-Newton algorithms
for large scale unconstrained optimization. Math. Prog., 26,
190–212.

——, S. C. Eisenstat, and T. Steilhaug, 1982: Inexact Newton meth-
ods. SIAM J. Numer. Anal., 19, 400–408.

Doyle, J. D., and Coauthors, 2000: An intercomparison of model-
predicted wave breaking for the 11 January 1972 Boulder wind-
storm. Mon. Wea. Rev., 128, 901–914.

Eisenstat, S. C., and H. F. Walker, 1996: Choosing the forcing terms
in a inexact Newton method. SIAM J. Sci. Comput., 17, 16–32.

——, H. C. Elman, and M. H. Schultz, 1983: Variational iterative
methods for nonsymmetric systems of linear equations. SIAM J.
Numer. Anal., 20, 345–357.

Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of
the fifth-generation Penn State/NCAR mesoscale model (MM5).
NCAR/TN-398 1 STR, 121 pp. [Available from National Center
for Atmospheric Research, Boulder, CO 80307; and online at
http://www.mmm.ucar.edu/mm5.]

Knoll, D. A., 1998: An improved convection scheme applied to re-
combining divertor plasma flows. J. Comput. Phys., 142, 473–
488.

——, P. McHugh, and D. Keyes, 1996: Newton–Krylov methods for
low-Mach-number compressible combustion. AIAA J., 34, 961–
967.

——, D. B. Kothe, and B. Lally, 1999a: A new nonlinear solution
method for phase-change problems. Numer. Heat Transfer, 35B,
439–459.

——, W. J. Rider, and G. L. Olson, 1999b: An efficient nonlinear
solution method for non-equilibrium radiation diffusion. J.
Quant. Spectrosc. Radiat. Transfer, 63, 15–29.

McHugh, P. R., and D. A. Knoll, 1994: Fully implicit finite volume
solutions of the incompressible Navier–Stokes and energy equa-
tions using inexact Newton’s method. Int. J. Numer. Methods
Fluids, 18, 439–455.

Mousseau, V. A., D. A. Knoll, and W. J. Rider, 2000: Physics-based
preconditioning and the Newton–Krylov method for non-equi-
librium radiation diffusion. J. Comput. Phys., 160, 743–765.

Nash, S. G., 1985: Precondition of truncated-Newton methods. SIAM
J. Sci. Stat. Comput., 6, 599–616.

——, and A. Sofer, 1990: Assessing a search direction within a Trun-
cated-Newton method. Oper. Res. Lett., 9, 219–221.

Pernice, M., and H. F. Walker, 1998: NITSOL: A Newton Iterative
Solver for Nonlinear Systems. SIAM J. Sci. Comput., 19, 302–
318.

Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological
modeling system—RAMS. Meteor. Atmos. Phys., 49, 69–91.

Qin, N., D. K. Ludlow, and S. T. Shaw, 2000: A matrix-free pre-
conditioned Newton/GMRES method for unsteady Navier–
Stokes solution. Int. J. Numer. Methods Fluids, 33, 223–248.

Reisner, J. M., S. Wynne, L. G. Margolin, and R. R. Linn, 2000:
Coupled atmospheric–fire modeling employing the method of
averages. Mon. Wea. Rev., 128, 3683–3691.

Saad, Y., 1995: Iterative Methods for Sparse Linear Systems. Inter-
national Thompson Publishing, 447 pp.

Schär, C., and P. K. Smolarkiewicz, 1996: A synchronous and iterative
flux-correction formalism for coupled transport equations. J.
Comput. Phys., 128, 101–120.

Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split
numerical methods for the hydrostatic and nonhydrostatic elastic
equations. Mon. Wea. Rev., 120, 2109–2127.

——, P. K. Smolarkiewicz, and J. B. Klemp, 1997: Preconditioned
conjugate-residual solvers for Helmholtz equations in nonhy-
drostatic models. Mon. Wea. Rev., 125, 587–599.

Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite
advection transport algorithm with small implicit diffusion. J.
Comput. Phys., 54, 325–362.

——, and L. G. Margolin, 1993: On forward-in-time differencing for
fluids: Extension to a curvilinear framework. Mon. Wea. Rev.,
121, 1847–1859.

——, and ——, 1994: Variational solver for elliptic problems in
atmospheric flows. Appl. Math. Comput. Sci., 4, 527–551.

——, and ——, 1997: On forward-in-time differencing for fluids:
An Eulerian/semi-Lagrangian nonhydrostatic model for stratified
flows. Atmos.–Ocean, XXXV, 127–152.

